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THE  DANTZIG-WOLFE DECOMPOSITION PRINCIPLE  AND 

MINIMUM COST MULTICOMMODITY  NETWORK FLOWS 

Richard D.   Wollmer 

The  RAND Corporation,   Santa Monica,  California 

ABSTRACT 

J.   A.   Tomlin published  a paper  [1]  on meeting required multi- 

commodity  network  flows  at  minimum cost.     He  formulated   this  problem 

in  both node-arc  and  arc-chain  form.     The node-arc   linear program was 

attacked  by   the  Dantzig-Wolfe  decomposition principle  by expressing 

the  derived master program as   convex  combinations  of   the  extreme points 

of  the derived   subprograms.     In  this  note,   it is  shown  that  this  prob- 

lem  is  really  a  special  case of  the  problem where  one   is  attempting  to 

meet minimum cost multicommodity  flows   without flow requirements  on  the 

individual  commodities.     Tomlin's  algorithm is  then modified   to  solve 

this more  general  problem.     When  this   is done,   the  subprograms   are 

homogeneous  and   the master program is   a nonnegative   combination  of 

their  independent  solutions. 

Any views  expressed   in  this  paper  are   those of  the author.     They 
should  not  be   interpreted  as  reflecting   the views  of The RAND  Corporation 
or   the official   opinion or  policy of  any of  its  governmental  or  private 
research  sponsors.     Papers  are  reproduced by The  RAND Corporation  as  a 
courtesy  to members of  its  staff. 
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INTRODUCTION 

Consider   a network  [N,A] with n nodes  and m directed arcs  joining 

pairs of nodes.     Assign   (i,j),   the arc  directed  from i   to j,   a capac- 

ity  b,.  ^ 0  and  a cost  c..   per unit of   flow.     The   c./s  are  such  that 

the   total  cost  on any  directed  cycle   is  nonnegative.     Commodity  k, 

k =  1,   ...,  q,   is  identified by  its  source  s     and   its  sink t   .     It   is 

required  to  find  a multicommodity flow  that   satisfies   the capacity   con- 

straints  at minimum cost. 

Tomlin  [1]  published   a paper  in which  c..  ^ 0  and   a flow r    of 

commodity k was  required.     It will be   shown  later   that  this  problem 

is  a special  case of   the one  treated  here»     Other  special cases   treated 

by  this more  general  formulation are maximizing a   linear combination 

of   the k distinct commodity  flows  and  finding an  efficient  routing 

when the value  of a routing  is  proportional   to  individual  commodity 

flows but  this  value  can be offset by  transportation costs. 

vH'inMgaaffisssaffisffiaMahiifi^affiaM^ 
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DECOMPOSITION 

Let y  be the flow of commodity k on arc (i,j) and v  the total 
ij K 

flow of commodity k.  Then it is required to find y  , v^, and min Z 

such that 

(1) Z=E       c..^. 

(2) 2Z ^ü ^ bii ai1 {i>^ 
k=i 

(3) 
U  =I>ij   ■  yji)    + 

k = i, •.., q 

•v. for   i   =  s. 
k k 

v, for  i  =  t, 
k k 

Ü otherwise 

Letting A, be the node-arc incidence matrix of the network; d  an n 

vector containing -1 in the s  position, + 1 in the t position, and 

0 elsewhere; v, the vector of arc flows < y.. > for commodity k; b the 
^k ij 

vector of arc capacities; c' the vector < c.. > 0f arc costs; and 

s a vector of slacks, (1-3) may be written as 

(4) c'yj + cy. Z min 

ly1 + Iy2 + ...  + ly  + Is = b 

Vl + dlVl 

A2y2 + d2v2 

Ay + d v 
q q  q q 

■ .- ..(S"' <" -"  -, 
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Notc that solutions to A^y, + ^i,vi, = ^ may ^e decomposed into 

units of flow along paths from s  to t and along cycles.  However, 

since all cycles have nonnegative cost and since elimination of flow 

on cycles from a feasible solution cannot yield an infeasible solution, 

cycle flows need not appear in an optimal solution and can be eliminated 

from consideration.  Thus, let W = -^ W  , .,., W  I be the set of 

solutions corresponding to one unit of flow on a directed path from 

s  to t .  W  is then a set of points that span the set of solutions 
K K K 

to A^y    + d v     = 0  which  contain no   cycles.     Then,  applying   the Dantzig- 

Wolfe  decomposition  principle  [2] one may write y    as  a nonnegative 

combination of   the  elements of  W    and   (4)  becomes 

N. N 

(5) ^X^    (   cV.)   +      •..   +X>qj    ^   -      qj 
(  c'w   ,)   = Z  min 

«I 
N, 

j=l J 

X, .   ä 0 

The  number of  variables   in  (5)   is of   course  too   large   to  enumerate. 

However,   suppose  we  have  a basic  feasible   solution and   let  TT. .  be   the 

corresponding simplex multiplier  for the  row containing b..   on  the 

riaht-hand   side  and  TT'   = < v. .  >•     If n. .   > 0,   then  s. ,  may be  intro- 

duced   into   the basis   to  give  an  improved  basic  solution.     If  all  rf. .   <, 0, 

then  any  solution  with 

(6) c  w 
kj ' '' I "»3 < 0 
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will yield an improvement.  If no w  satisfies (6), then the current 

solution is optimal.  If arc (i.i) is assigned a cost of c,. - n.., 
ij   ij 

then the left-hand side of (6) is equal to the total cost of the path 

represented by w  ,  Thus the search for a solution satisfying (6) may 

be found by finding the shortest path between s  and t  for k = 1, ..., q. 
K       K 

Efficient methods for finding shortest chains are given in [3-5].  Many 

of them require that the network contain no negative cycles.  This is 

assured when all n.. < 0 due to our initial restriction of the c..s. 

The phase I procedure for finding a starting feasible basis to 

initiate the algorithm is accomplished by setting Is = b. 

>-«wmr«uiM«MMi.^ty^Maii;Tyrrirm^^^ 
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FLOW REQUIREMENTS 

Tomlin  [1]   treats   the  problem where   it  was   required   to minimize 

total  nccwork cost   subject  to   the  restriction   that  the   total  flow of 

commodity  k be  equal   to  r,.     Furthermore,   it  was  assumed   that all 

c      s 0,     This  can be   treated  as  a  special   case of  the  problem treated 

in  this  paper.     For  each k one merely  attaches  an artificial   node  and 

rtificial   arc  from  it   to  s     (or  alternatively  to  it   from  t  ) 

is  artificial  arc   is  assigned  a  capacity  of  r    and  a very   large  neg- 

tificial   arcs belong  to cycles,   our 
at 

directs  an  a 

Th 

ive  cost.     Since  none of   these   ar 

initial   restriction on   the  c..s  will   hold. 

The  node-arc  formulation  in   (1)   differs  only slightly  from ours. 

Specifically,   (4)   is   replaced by 

(7) 
Z min 

+    ...    +    iyn + Is = b 
ly1      +    ly2      +    •••    ^    ^q 

Vl 
= dl 

v2 

=  d A y^ i q q 

Y    s 0    all  k 

„ere d     IS  .he  vector »1th  a„ r,  U  the  3k position   a  -r,  in  the   tk 

ltll,   a„d  .eto  e»ery.hete eUe.   eU  other varUUe.  are  as  aeUoe. 

ition.     However, the  sub- 

posi 

before. 

This problem is also treated by decompose 

s A y  = d , are no longer homogeneous and consequently, instead 
programs, A^  "q> 

iJ|fflilft^lkliJllBaillnill^W.J«li.li.l!i.!^        i.ii.M.H.Mlli.LMI.llM.lMiliHIIJILW^lUlMW»^^»^^ nhtiflifitri 1  '—-"iMiiriiiifiiiniiiniiiiii- 
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of looking for a nonnegative combination of independent solutions to 

the subprograms, we look for convex combinations of their extreme 

points.  Thus letting W = [w  , ..., w  ] be the extreme points of 
k 

Akyi = dk' ^ ls rePlaced by 

(8) 

N. N 
i q 

V X. . (c'w. .)  + ...   +y x   .   (c'w   .)   = Z min 

j=i j=i 
N] Nq 
EX. . (Iw. .)    + ...   +y X   .   (Iw   .)  + Is  = b 

ij       ij Z-*  qj      qj 
j=i 

2-/    ij 

\  .   > 0 

q 

yx ■ L~d   qj 

= 1 

= l 

The extreme  points of   these subprograms  are   also  paths and  hence   the 

W,   defined  here  is   identical to   that  defined   in  the  last  section.     In 
k 

form,   (8)  differs  from  (5)  only  in  that one must  add a convexity  con- 

straint on  the X, .   for each k.     However,   if   (5)   is used,   one must  also 

add constraints  reflecting capacities  on  the   added artificial  arcs 

(i.e.   the  b vector  in   (5)   is  larger  than  that  in   (8)  by  the number of 

commodities)   which  differ only  slightly from  the  convexity  constraints 

in  (8).     Thus   for  this  special   case   the  formulations  are almost   identical. 

-'" ■---■-- Ml - Jiiir>-mifrir>Mitiitfmlnri ■M^mtitlMi MMBnuMtMMiMn ■MiniMiirWMMiiii     n i 
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ARC-CHAIN FORMULATION 

In [1] the minimum cost multicommodity problem was also formulated 

as a linear program in terms of its arc chain incidence matrix.  Spec- 

ifically, rows correspond to arcs and columns to chains.  The program 

was then solved by a simple extension of a method due to Ford and 

Fulkerson [6] which has since been extended by Wollmer [7].  It was 

shown that this method turned out to be equivalent to applying de- 

composition to the node-arc program. 

In this paper, we will not go into the details of this method 

other than to conuHent that if the more general problem of this paper 

is formulated in terms of its arc-chain incidence matrix, it may also 

be solved by a similar extension to the method proposed in [6] and 

that this method is also equivalent to applying decomposition to the 

node-arc linear program. 

Hlllll llWiWlMIMI|lilllll»»lllllllMI1l1i>Tl«WMB<WWMllllTM i"»1"  ilililniin  r i.iniiin i i 
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CONCLUDING REMARKS 

It has been shown that the problem treated in [1] is  a special 

case of that treated here. As other special cases, the problem treated 

here includes (i) maximizing a linear combination of the individual 

commodity flows and (ii) finding an efficient routing that takes into 

consideration the value of both the individual commodity flows and 

the transportation costs involved.  The former of these is accomplished 

by attaching, for each commodity, and artificial node and an artificial 

arc directed from it to the source.  The artificial arcs are given 

infinite capacities and costs whose negatives are proportional to the 

linear coefficients of the commodity flows in the linear function that 

is to be maximized.  For the latter problem, one also adds these same 

artificial nodes and arcs, the new arcs having infinite capacity.  The 

cost on the artificial arc for commodity k is the negative of the value of 

a unit of flow of commodity k.  Thus the scope of problen.s treated 

in [1] may be significantly increased by relatively small changes in 

the problem formulation and algorithms. 
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